Excluding a planar graph from GF(q)-representable matroids

نویسندگان

  • James F. Geelen
  • Bert Gerards
  • Geoff Whittle
چکیده

We prove that a binary matroid with huge branch-width contains the cycle matroid of a large grid as a minor. This implies that an infinite antichain of binary matroids cannot contain the cycle matroid of a planar graph. The result also holds for any other finite field. © 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroids Representable Over Fields With a Common Subfield

A matroid is GF(q)-regular if it is representable over all proper superfields of the field GF(q). We show that, for highly connected matroids having a large projective geometry over GF(q) as a minor, the property of GF(q)-regularity is equivalent to representability over both GF(q) and GF(q) for some odd integer t ≥ 3. We do this by means of an exact structural description of

متن کامل

Growth rate functions of dense classes of representable matroids

For each proper minor-closed subclassM of the GF(q)representable matroids containing all GF(q)-representable matroids, we give, for all large r, a tight upper bound on the number of points in a rank-r matroid inM, and give a rank-r matroid inM for which equality holds. As a consequence, we give a tight upper bound on the number of points in a GF(q)-representable, rank-r matroid of large rank wi...

متن کامل

Fork-decompositions of ?\iatroids

One of the central problems in matroid theory is Rota's conjecture that, for all prime powers q, the class of GF(q)-representable matroids has a finite set of excluded minors. This conjecture has been settled for q s; 4 but remains open otherwise. Further progress towards this conjecture has been hindered by the fact that, for all q > 5, there are 3-connected GF(q)-representable matroids having...

متن کامل

Odd circuits in dense binary matroids

The exclusion of odd circuits from a binary matroid here is natural. The geometric density Hales-Jewett theorem [3] implies that dense GF(q)representable matroids with sufficiently large rank necessarily contain arbitrarily large affine geometries over GF(q); these geometries contain circuits of every possible even cardinality when q= 2 and circuits of every possible cardinality when q>2. So de...

متن کامل

Inequivalent Representations of Bias Matroids

Suppose that q is a prime power exceeding five. For every integer N there exists a 3-connected GF(q)-representable matroid, in particular, a free spike or a free swirl, that has at least N inequivalent GF(q)-representations. In contrast to this, Geelen, Oxley, Vertigan and Whittle have conjectured that, for any integer r > 2, there exists an integer n(q, r) such that if M is a 3-connected GF(q)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 97  شماره 

صفحات  -

تاریخ انتشار 2007